

TEST REPORT IEC 61683

Photovoltaic systems – Power conditioners – Procedure for measuring efficiency

Report Number:	2217 / 1094 – 4 – M2 (*)
(*)This is a co- report of the report 221	7 / 1094 – 4 – M1, for detailed information refer to page 8.
Date of issue	18 / 06 / 2019
Total number of pages	26
Applicant's name:	EVOLVE ENERGY GROUP CO., LIMITED
Address:	RM 702, 7/F FU FAI COMM CTR 27 HILLIER ST SHEUNG WAN, HK
Test specification:	
Standard:	IEC 61683:1999 (First Edition)
Test procedure:	Characteristic Examination
Non-standard test method:	N/A
Test Report Form No	IEC61683A
Test Report Form(s) Originator:	TÜV SÜD Product Service GmbH
Master TRF	Dated 2014-10
Copyright © 2014 IEC System of Cor Equipment and Components (IECEE	formity Assessment Schemes for Electrotechnical System). All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

If this Test Report Form is used by non-IECEE members, the IECEE/IEC logo and the reference to the CB Scheme procedure shall be removed.

This report is not valid as a CB Test Report unless signed by an approved CB Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02.

General disclaimer:

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing CB Testing Laboratory. The authenticity of this Test Report and its contents can be verified by contacting the NCB, responsible for this Test Report.

Test item description:	Solar Grid-tied Inverter
Trade Mark:	EVIVO
Manufacturer	
Model/ I ype reference	EVVO 60001LG2, EVVO 50001LG2,EVVO 46001LG2 EVVO4000TLG2,EVVO 3600TLG2,EVVO3000TLG2
Ratings:	EVVO 6000TLG2
	DC input: 90-580V, 11/11A.
	AC output: 230V, 50Hz, 27.3A, 6000VA
	EVVO 5000TLG2
	DC input: 90-580V, 11/11A.
	AC output: 230V, 50Hz, 22.8A, 5000VA
	EVVO 4600TLG2
	DC input: 90-580V, 11/11A.
	AC output: 230V, 50Hz, 21A, 4600VA
	EVVO 4000TLG2
	DC input: 90-580V, 11/11A.
	AC output: 230V, 50Hz, 18.2A, 4000VA
	EVVO 3600TLG2
	DC input: 90-580V, 11/11A.
	AC output: 230V, 50Hz, 16.8A, 3680VA
	EVVO 3000TLG2
	DC input: 90-580V, 11/11A.
	AC output: 230V, 50Hz, 13.7A, 3000VA
	Serial Number: ZG1ES060H61001
	ZH1ES160H9S999 for spot-check test
	Firmware version: V0.22

Testing procedure and testing location:				
Test date from 30/10/2017 to 11/11/2017 (loc	ation 1) and 24/04/2019 a	and 06/05 2019 (location 2)		
Testing procedure: TMP/CTF Stage 1:	Shenzhen SOFAR SO	LAR Co., Ltd.		
Testing location/ address:	Location 1: 5/F,Building 4, Antongd Avenue, Xin'an Street, I Guangdong Province, F Location 2: 401, Building 4, AnTong XingDong Community, 2 Shenzhen City, Guango	a Industrial Park, No. 1 Liuxian Bao'an District, Shenzhen City, P.R. China gDa Industrial Park, District 68, XinAn Street, BaoAn District, dong Province, P.R. China		
Tested by (name + signature):	Roger Hu (Project Engineer)	Regulter		
Approved by (name + signature):	Jacobo Tevar (Technical Reviewer)	SGS Tecnos S.A. Laborate de Erenovi ERE		

List of Attachments	(including a total number of	pages in each at	tachment):
	50	0Hz	
Attachment #	Description		Pages
Attachment I	Pictures of the EUT and Ele	ctrical Schemes	12 pages
Attachment II	Testing Information		5 pages
Summary of testing:			
Tests performed (na clause): The equipment has be standard: IEC 61683:1999. Test 50Hz. All applicable tests ac specified standard hav	me of test and test een tested according to the ting has been carried out at cording to the above ve been carried out.	Testing location Test date from 3 Shenzhen SOF 5/F,Building 4, A Liuxian Avenue, Shenzhen City, 0 (All Clauses) Test date on 24/	n: 0/10/2017 to 11/11/2017: AR SOLAR Co., Ltd. Intongda Industrial Park, No. 1 Xin'an Street, Bao'an District, Guangdong Province, P.R. China 04/2019 and 06/05 2019:
From the result of inspection and tests on the submitted sample, we conclude that it complies with the requirements of the standard. This report is a first issuance for a co-license based on report number 2217 / 1094 – 4– M1, See further information in page 8.		Shenzhen SOFAR SOLAR Co., Ltd. 401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen City, Guangdong Province, P.R. China (Repetition of Clause 4.3)	
Summary of complia	ance with National Difference	es	
List of countries add	Iressed	oport	
INO INATIONAL DIFFERCE	es are addressed to this test re	eport	

Copy of marking plate(representative):					
F\/\/O	Solar Grid-tied Inverter				
	EVANO SODOTI CO				
Model No.	EVV0 80001LG2				
Max.DC Input Voltage	3600V				
Operating MPPT Volta	age Range 90~580V				
Max. Input Current	2 <u>x11A</u>				
Max. PV Isc	2x13.2A				
Nominal Grid Voltag	1e230V				
Max.Output Current	t27.3A				
Nominal Grid Freque	ency 50/60Hz				
Nominal Output Pow	ver 6000W				
Max.Output Power	6000VA				
Power Factor	1(adjustable+/-0.8)				
Ingress Protection	IP65				
Operating Temperat	ture Range -25°C~+60°C				
Protection Class	Class				
Inverter Topology	Non-Isolated				
Eastery Shenzhen	China				
Pactory - Shenzhen Menufecturer: EVOLVE	ENERGY GROUP CO. LIMITED				
Address :RM 702, 7/F FU SHEUNG WAN, HK Global Head Ouarters	U FAI COMM CTR 27 HILLIER ST				
371 Sidco Industrial Est	ate				
Chennai 600098 India VDE0126-1-1 G99 EN5/	0438 AS4777 JEC62116 JEC61727				
	AO. A X				

Note:

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation
- 3. Labels of other models are as the same with EVVO 6000TLG2's except the parameters of rating.

Test item particulars:	Single Phase Inverter
Classification of installation and use:	Fixed(permanent connection)
Supply Connection:	DC; PV
:	AC; Grid connection
Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	P (Pass)
- test object does not meet the requirement:	F (Fail)
Testing:	CTF Stage 1 procedure
Date of receipt of test item:	N/A
Date (s) of performance of tests:	From 30/10/2017 to 11/11/2017, 24/04/2019 and 06/05 2019
General remarks:	
"(See Enclosure #)" refers to additional information ap "(See appended table)" refers to a table appended to th This document is issued by the Company subject to its General Con accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for elec Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u> . Att jurisdiction issues defined therein. Any holder of this document is an findings at the time of its intervention only and within the limits of Cl its Client and this document does not exonerate parties to a transac transaction documents. This document cannot be reproduced excep unauthorized alteration, forgery or falsification of the content or app prosecuted to the fullest extent of the law. Unless otherwise stated tested. Throughout this report a comma / point is us	Appended to the report. The report. Inditions of Service printed overleaf, available on request or contronic format documents, subject to Terms and Conditions for ention is drawn to the limitation of liability, indemnification and dvised that information contained hereon reflects the Company's lient's instructions, if any. The Company's sole responsibility is to control from exercising all their rights and obligations under the pt in full, without prior written approval of the Company. Any earance of this document is unlawful and offenders may be the results shown in this test report refer only to the sample(s) seed as the decimal separator.
Manufacturer's Declaration per sub-clause 4.2.5 of	IECEE 02:
The application for obtaining a CB Test Certificate includes more than one factory location and a declaration from the Manufacturer stating that the sample(s) submitted for evaluation is (are) representative of the products from each factory has been provided	 ☐ Yes ☑ Not applicable
When differences exist; they shall be identified in the	he General product information section.
Name and address of factory (ies):	Dongguan SOFAR SOLAR Co., Ltd.
	1F - 6F, Building E, No. 1 JinQi Road, Bihu Industrial Park, Wulian Village, Fenggang Town, Dongguan City, Guangdong Province,P.R. China.

General product information:

Product covered by this report is grid-connected PV inverter for indoor or outdoor installation. The connection to the DC input and AC output are through connectors. The structure of the unit complied with the IP 65 requirement.

The inverters intended to operate at ambient temperature -25° C - $+60^{\circ}$ C, which will be specified in the user manual, however, the inverters will output full power when operated at 45° C, if operated at higher than 45° C temperature, the output power would be derate.

The Solar inverter converts DC voltage into AC voltage.

The input and output are protected by varistors to Earth. The unit is providing EMC filtering at the output toward mains. The unit does not provide galvanic separation from input to output (transformerless). The output is switched off redundant by the high power switching bridge and a two relays. This assures that the opening of the output circuit can operate in case of one error.

Equipment Under Testing:

- EVVO 6000TLG2
- EVVO 5000TLG2
- EVVO 4600TLG2
- EVVO 4000TLG2
- EVVO 3600TLG2
- EVVO 3000TLG2

Product Model	EVVO 3000TL G2	EVVO 3600TL G2	EVVO 4000TL G2	EVVO 4600TL G2	EVVO 5000TL G2	EVVO 6000TL G2
Input (DC)						
Max.DC Input Power	3500W	4000W	4400W	5000W	5500W	6600W
Max.DC Voltage			60	0V		
Power Turn on			80)V		
Start-up input voltage			12	0V		
Rated input voltage			36	0V		
MPPT Voltage Range			90-5	80V		
Full load DC voltage range	160- 520V	180- 520V	200- 520V	230- 520V	250- 520V	300- 520∨
MAX input current per MPPT	11A/11A					
Number of DC inputs			2/	/2		
Output(AC)						
Max AC Output power	3000VA	3680VA	4000VA	4600VA	5000VA	6000VA
Max AC Output power (PF=1)	3000W	3680W	4000W	4600W	5000W	6000W
Max AC Output Current	13.7A	16.8A	18.2A	21A	22.8A	27.3A
Nominal Grid Voltage			230Vac(Sir	ngle phase)		
Nominal Frequency			50	Hz		
Power factor			1(adjusta	ble+/-0.9)		
Topology	Transformerless					
Operating temperature	-25-60 °C					
range						
Degree of protection	IP65					

The variants models have been included in this test report without tests because the following features don't change regarding to the tested model:

- Same connection system and hardware topology
- Same control algorithm.
- Output power within 2.5 and 2/3 of the EUT or Modular inverters
- Same Firmware Version

The report nº 2217 / 1094 – 4 – M1 was modified based on Report No. 2217 / 1094 – 4 with following points:

1. Modified the Applicant address from:

5/F,Building 4, Antongda Industrial Park, No. 1 Liuxian Avenue, Xin'an Street, Bao'an District, Shenzhen City, Guangdong Province, P.R. China

to

401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen City, Guangdong Province, P.R. China

2. Modified the Factory name and address from:

Shenzhen SOFARSOLAR Co., Ltd.

5/F,Building 4, Antongda Industrial Park, No. 1 Liuxian Avenue, Xin'an Street, Bao'an District, Shenzhen City, Guangdong Province, P.R. China

to

Dongguan SOFAR SOLAR Co., Ltd.

1F - 6F, Building E, No. 1 JinQi Road, Bihu Industrial Park, Wulian Village, Fenggang Town, Dongguan City, Guangdong Province, P.R. China.

3. Add spot-check test for SOFAR 6KTLM-G2 Efficiency TEST b) The inverter's nominal voltage condition in page 14.

The report nº 2217 / 1094 – 4 – M2 is a co-report based on Report No. 2217 / 1094 – 4 – M1.

The report is issued including the co-license for EVOLVE ENERGY GROUP CO., LIMITED. Models are the same as appearing in the base reports with different denomination and trademark. Editorial changes have been included to change the applicant and trademark references.

Page 9 of 26

IEC 61683: 1999				
Clause	Requirement – Test	Measuring result – Remark	Verdict	

4	Efficiency measurement conditions		Р
	Efficiency is measured under the conditions in the following clauses.		Р
	Specific conditions may be excluded by mutual agreement when those conditions are outside the manufacturer's allowable operating range.		Ρ
4.1	DC power source for testing		Р
	For power conditioners operating with fixed input voltage, the d.c. power source is a storage battery or constant voltage power source to maintain the input voltage.		N/A
	For power conditioners that employ maximum power point tracking (MPPT) and shunt-type power conditioners, either a photovoltaic array or a photovoltaic array simulator is utilized.		P
4.2	Temperature		Р
	All measurements are to be made at an ambient temperature of 25 °C \pm 2 °C.		N/A
	Other ambient temperatures may be allowed by mutual agreement. However, the temperature used must be clearly stated in all documentation.	By mutual agreement all measurements at 50 Hz have been carried out at 25°C±5°C	Ρ
4.3	Output voltage and frequency		Р
	The output voltage and frequency are maintained at the manufacturer's stated nominal values.	230Vac, 50Hz	P
4.4	Input voltage		Р
	 Measurements performed in each of the following tests are repeated at three power conditioner input voltages: a) manufacturer's minimum rated input voltage; b) the inverter's nominal voltage or the average of its rated input range; c) 90 % of the inverter's maximum input voltage. 		Ρ
	In the case where a power conditioner is to be connected with a battery at its input terminals, only the nominal or rated input voltage may be applied.		N/A
4.5	Ripple and distortion		Р
	Record input voltage and current ripple for each measurement. Also record output voltage and current distortion (if a.c.) or ripple (if d.c.). Ensure that these measurements remain within the manufacturer's specified values.		Ρ
4.6	Resistive loads/utility grid		Р

Page 10 of 26

Report No. 2217 / 1094 - 4 - M2

IEC 61683: 1999				
Clause	Requirement – Test	Measuring result – Remark	Verdict	

At unity power factor, or at the intrinsic power factor of grid-connected inverters without power factor adjustment, measure the efficiency for power levels of 10 %, 25 %, 50 %, 75 %, 100 % and 120 % of the inverter's rating.		Ρ
Stand-alone inverters are also measured at a power level of 5 % of rated. The power conditioner test is conducted with a specified resistive and reactive grid impedance.		N/A
Reactive loads		N/A
For stand-alone inverters, measure the efficiency with a load which provides a power factor equal to the manufacturer's specified minimum level (or 0,25, whichever is greater) and at power levels of 25 %, 50 % and 100 % of rated VA.		N/A
Repeat for power factors of 0,5 and 0,75 (do not go below the manufacturer's specified minimum PF) and power levels of 25 %, 50 %, and 100 % of rated VA.		N/A
Resistive plus non-linear loads		N/A
For stand-alone inverters, measure the efficiency with a fixed non-linear load (total harmonic distortion (THD) = (80 ± 5) %) equal to (25 ± 5) % of the inverter's rated VA plus sufficient resistive load in parallel to achieve a total load of 25 %, 50 % and 100 % of rated VA.		N/A
Repeat the measurements with a fixed non- linear load equivalent to (50 ± 5) % of the inverter's rated VA plus sufficient resistive load in parallel to achieve a total load of 50% and 100% of rated VA.		N/A
The type of non-linear load must be clearly stated in all documentation.		N/A
Complex loads		N/A
When a non-linear plus a sufficient reactive load condition is specified for stand-alone inverters, measure the efficiency with a fixed non-linear load (THD = (80 ± 5) %) equal to (50 ± 5) % of the inverter's rated VA plus a sufficient reactive load (PF = 0,5) in parallel to achieve a total load of 50 % and 100 % of rated VA.		N/A
The type of complex load is clearly stated in all documentation.		N/A
	At unity power factor, or at the intrinsic power factor of grid-connected inverters without power factor adjustment, measure the efficiency for power levels of 10 %, 25 %, 50 %, 75 %, 100 % and 120 % of the inverter's rating. Stand-alone inverters are also measured at a power level of 5 % of rated. The power conditioner test is conducted with a specified resistive and reactive grid impedance. Reactive loads For stand-alone inverters, measure the efficiency with a load which provides a power factor equal to the manufacturer's specified minimum level (or 0,25, whichever is greater) and at power levels of 25 %, 50 % and 100 % of rated VA. Repeat for power factors of 0,5 and 0,75 (do not go below the manufacturer's specified minimum PF) and power levels of 25 %, 50 %, and 100 % of rated VA. Resistive plus non-linear loads For stand-alone inverters, measure the efficiency with a fixed non-linear load (total harmonic distortion (THD) = (80 ± 5) %) equal to (25 ± 5) % of the inverter's rated VA plus sufficient resistive load in parallel to achieve a total load of 25 %, 50 % and 100 % of rated VA. Repeat the measurements with a fixed non- linear load equivalent to (50 ± 5) % of the inverter's rated VA plus sufficient resistive load in parallel to achieve a total load of 50% and 100% of rated VA. The type of non-linear load must be clearly stated in all documentation. Complex loads When a non-linear plus a sufficient reactive load condition is specified for stand-alone inverters, measure the efficiency with a fixed non-linear load (THD = (80 ± 5) %) equal to (50 ± 5) % of the inverter's rated VA plus a sufficient reactive load (PF = 0,5) in parallel to achieve a total load of 50 % and 100 % of rated VA. The type of complex load is clearly stated in all documentation.	At unity power factor, or at the intrinsic power factor of grid-connected inverters without power factor of grid-connected inverters without power factor adjustment, measure the efficiency for power levels of 10 %, 25 %, 50 %, 75 %, 100 % and 120 % of the inverter's rating. Stand-alone inverters are also measured at a power level of 5 % of rated. The power conditioner test is conducted with a specified resistive and reactive grid impedance. Reactive loads For stand-alone inverters, measure the efficiency with a load which provides a power factor equal to the manufacturer's specified minimum level (or 0,25, whichever is greater) and at power levels of 25 %, 50 % and 100 % of rated VA. Repeat for power factors of 0,5 and 0,75 (do not go below the manufacturer's specified minimum PF) and power levels of 25 %, 50 %, and 100 % of rated VA. Resistive plus non-linear loads For stand-alone inverters, measure the efficiency with a fixed non-linear load (total harmonic distortion (THD) = (80 ± 5) %) equal to (25 ± 5) % of the inverter's rated VA plus sufficient resistive load in parallel to achieve a total load of 25 %, 50 % and 100 % of rated VA. Repeat the measurements with a fixed non- linear load equivalent to (50 ± 5) % of the inverter's rated VA plus sufficient resistive load in parallel to achieve a total load of 50% and 100% of rated VA. The type of non-linear load must be clearly stated in all documentation. Complex loads When a non-linear plus a sufficient reactive load condition is specified for stand-alone inverters, measure the efficiency with a fixed non-linear load (THD = (80 ± 5) %) equal to (50 ± 5) % of the inverter's rated VA plus a sufficient reactive load (PF = 0,5) in parallel to achieve a total load of 50 % and 100 % of rated VA. The type of complex load is clearly stated in all documentation.

5	Efficiency calculations	Р
5.1	Rated output efficiency	Р

Page 11 of 26

	IEC 61683: 1999		
Clause	Requirement – Test	Measuring result – Remark	Verdict

5.2	Partial output efficiency	Р
5.3	Energy efficiency	Р
5.4	Efficiency tolerances	Р

6.1 Test circuit P Figure 1a is applied to standard-alone power conditioners N/A Image: standard s	6	Conditions of loading for output ports	Р
Figure 1a is applied to standard-alone power conditioners N/A Image: Second	6.1	Test circuit	Р
Image: stand-allow type N/A Image: stand-allow type Figure 1b is applied to utility-interactive power conditioners P Image: stand-allow type P		Figure 1a is applied to standard-alone power conditioners	N/A
Figure 1b is applied to utility-interactive power conditioners P Image: Provide state of the s		Figure 1a - Stand-alone type	N/A
Figure 1b - Utility-interactive type Vitility Figure 1b - Utility-interactive type Figure 1b - Utility-interactive type PC power conditioner L load PS variable voltage-current d.c. power supply F frequency meter A1 DC ammeter V1 DC voltmeter A2 AC or d.c. ammeter V2 AC or d.c. voltmeter W1 DC wattmeter PF power factor meter W2 AC or d.c. wattmeter PF power factor meter W2 AC or d.c. wattmeter PF power factor meter W2 AC or d.c. wattmeter PF power factor meter W2 AC or d.c. wattmeter PF power factor meter		Figure 1b is applied to utility-interactive power conditioners	Р
6.2 Measurement procedure P		Image: state of the state	Ρ
	6.2	Measurement procedure	Р

7	Loss measurement	Р
7.1	No-load loss	Р
7.2	Standby loss	Р

Annex A	Power conditioner description	Р

Annex B	Power efficiency and conversion factor	Р
Annex C	Weighted-average energy efficiency	Р

Annex D	Derivation of efficiency tolerance in table 2	Р

TABLE	Efficiency re	ecording a	and efficie	ent calcula	ation shee	et				
power conditio	ner type	Grid-con	nected							
Model:		EVVO 6000TLG2								
Parameters of conditioner	power	Minimun Nominal Maximu	Minimum rated input voltage:300V Nominal voltage:360V Maximum input voltage:520V							
		Rated or	utput volt	age:230∨	<i>,</i>					
		Rated or	utput freq	uency:50	Hz					
		Rated or	utput pow	/er: 6000	N					
PV input voltag	ge	a)	Manufac	turer's mi	inimum ra	ated input	voltage			
Temperature (°C)				2	25°C ± 5°C	C			
Operating peri energy measu (min)	od for rement					1				
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/
Input voltage (V)	/	301.0	303.5	300.4	300.1	300.4	/	/	/
Input voltage r	ipple (V)	/	0.9	1.9	3.7	5.5	7.2	/	/	/
Input current (A)	/	2.1	5.1	10.4	15.6	20.1	/	/	/
Input current r	ipple (A)	/	0.2	0.5	0.8	1.2	1.6	/	/	/
Input power (F	Pi) (kW)	/	0.629	1.553	3.115	4.657	6.243	/	/	/
Output power	(Po) (kW)	/	0.601	1.500	3.016	4.503	6.017	/	/	/
Output efficier	юсу(%)	/	95.55	96.59	96.82	96.69	96.38	/	/	/
Input energy (Wi) (Wh)	/	10.468	25.907	51.886	77.599	104.054	/	/	/
Output energy	(Wo) (Wh)	/	9.969	25.044	50.261	75.029	100.306	/	/	/
Energy efficier	псу(%)	/	95.23	96.67	96.87	96.69	96.40	/	/	/
PV input voltage	ge	b)	The inve	rter's non	ninal volta	age				
Temperature (°C)				2	$25^{\circ}C \pm 5^{\circ}C$	C			
Operating peri energy measu (min)	od for rement	1								
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/
Input voltage (V)	/	358.1	357.5	357.6	357.0	364.6	/	/	/
Input voltage r	ipple (V)	/	1.2	2.4	4.8	7.0	8.3	/	/	/

Page 13 of 26

Input current (A)	/	1.7	4.3	8.7	13.0	17.0	/	/	/
Input current ripple (A)	/	0.3	0.6	1.1	1.6	1.9	/	/	/
Input power (Pi) (kW)	/	0.622	1.544	3.090	4.626	6.179	/	/	/
Output power (Po) (kW)	/	0.597	1.507	3.010	4.510	6.006	/	/	/
Output efficiency(%)	/	95.98	97.60	97.41	97.49	97.20	/	/	/
Input energy (Wi) (Wh)	/	10.352	25.719	51.509	77.083	103.035	/	/	/
Output energy (Wo) (Wh)	/	9.959	25.088	50.296	75.131	100.169	/	/	/
Energy efficiency(%)	/	96.20	97.55	97.65	97.47	97.22	/	/	/
PV input voltage	c)	c) 90% of the inverter's maximum input voltage							
Temperature (°C)	25°C ± 5°C								
Operating period for energy measurement (min)	1								
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%*	/	/
Input voltage (V)	/	464.5	466.1	468.2	468.1	464.6	/	/	/
Input voltage ripple (V)		1.0	1.9	4.0	5.4	7.2	/	/	/
Input current (A)	/	1.4	3.3	6.6	9.9	13.4	/	/	/
Input current ripple (A)		0.2	0.5	0.9	1.4	1.8	/	/	/
Input power (Pi) (kW)	/	0.627	1.544	3.090	4.638	6.185	/	/	/
Output power (Po) (kW)	/	0.601	1.498	3.011	4.515	5.995	/	/	/
Output efficiency(%)	/	95.85	97.02	97.44	97.35	96.93	/	/	/
Input energy (Wi) (Wh)	/	10.439	25.739	51.495	77.298	103.107	/	/	/
Output energy (Wo) (Wh)	/	10.009	25.030	50.192	75.232	100.089	/	/	/
Energy efficiency(%)	/	95.88	97.25	97.47	97.33	97.07	/	/	/
Remark: *If limited by design, inverte	er is not o	capable to	o operate	with the	120% of	rated outpu	ut load, tes	st unde	r this

condition is waived;

TABLE	Spot-check	test for E	fficiency	recording	and effici	ient calcu	lation shee	t		
power condition	ner type	Grid-connected								
Model:		EVVO 6000TLG2								
Parameters of conditioner	power	Minimun Nominal Maximu Rated of Rated of Rated of	Minimum rated input voltage:300V Nominal voltage:360V Maximum input voltage:520V Rated output voltage:230V Rated output frequency:50Hz Rated output power: 6000W							
PV input volta	ge	b)	The inve	rter's nor	ninal volta	age				
Temperature (°C)				2	25°C ± 5°	C			
Operating period for energy measurement (min)					1					
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/
Input voltage (V)	/	361.1	358.6	359.6	360.5	359.1	/	/	/
Input voltage r	ipple (V)	/	1.6	2.1	5.2	7.8	9.8	/	/	/
Input current (۹)	/	1.8	4.4	8.7	13.0	17.3	/	/	/
Input current ri	pple (A)	/	0.3	0.3	0.3	0.4	0.7	/	/	/
Input power (P	i) (kW)	/	0.634	1.571	3.125	4.668	6.199	/	/	/
Output power	(Po) (kW)	/	0.616	1.541	3.063	4.567	6.041	/	/	/
Output efficien	су(%)	/	97.19	98.02	98.01	97.78	97.49	/	/	/
Input energy (\	Ni) (Wh)	/	10.384	25.735	51.209	76.501	101.590	/	/	/
Output energy	(Wo) (Wh)	/	10.093	25.224	50.187	74.807	99.043	/	/	/
Energy efficier	ncy(%)	/	97.20	98.01	98.00	97.79	97.49	/	/	/

TABLE	Efficiency re	ecording a	cording and efficient calculation sheet								
power conditio	ner type	Grid-con	nected								
Model:		EVVO 5000TLG2									
Parameters of	power	Minimun	n rated in	put volta	ge:250V						
conditioner		Nominal voltage:360V									
		Maximu	Maximum input voltage:520V								
		Rated output voltage:230V									
		Rated or	utput freq	luency:50)Hz						
		Rated or	utput pow	/er: 5000	W						
PV input voltag	ge	a)	Manufac	turer's m	inimum ra	ated input	t voltage				
Temperature (°C)				2	$25^{\circ}C \pm 5^{\circ}C$	0				
Operating peri energy measu (min)	od for rement					1					
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/	
Input voltage (V)	/	249.3	248.4	250.5	250.3	247.2	/	/	/	
Input voltage r	ipple (V)	/	0.9	1.5	2.7	3.8	5.2	/	/	/	
Input current (A)	/	2.1	5.2	10.4	15.6	21.1	/	/	/	
Input current r	ipple (A)	/	0.2	0.3	0.6	0.9	1.2	/	/	/	
Input power (F	Pi) (kW)	/	0.532	1.302	2.593	3.888	5.207	/	/	/	
Output power	(Po) (kW)	/	0.501	1.252	2.503	3.753	5.011	/	/	/	
Output efficien	юсу(%)	/	94.17	96.16	96.53	96.53	96.24	/	/	/	
Input energy (Wi) (Wh)	/	8.851	21.695	43.212	64.816	86.747	/	/	/	
Output energy	(Wo) (Wh)	/	8.367	20.873	41.734	62.527	83.469	/	/	/	
Energy efficier	псу(%)	/	94.53	96.21	96.58	96.47	96.22	/	/	/	
			T I :								
	ge	D)	The inve	rter's nor		age					
Temperature (°C)				2	$25^{\circ}C \pm 5^{\circ}C$	C				
Operating peri energy measu (min)	od for rement	1									
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/	
Input voltage (V)	/	362.3	359.1	359.1	358.4	359.0	/	/	/	
Input voltage r	ipple (V)	/	1.4	2.1	3.8	5.8	7.8	/	/	/	

Page 16 of 26

Input current (A)	/	1.4	3.6	7.2	10.8	14.4	/	/	/
Input current ripple (A)	/	0.3	0.5	0.9	1.3	1.8	/	/	/
Input power (Pi) (kW)	/	0.519	1.289	2.569	3.850	5.148	/	/	/
Output power (Po) (kW)	/	0.495	1.262	2.508	3.757	5.018	/	/	/
Output efficiency(%)	/	95.38	97.91	97.63	97.58	97.48	/	/	/
Input energy (Wi) (Wh)	/	8.658	21.472	42.810	64.144	85.790	/	/	/
Output energy (Wo) (Wh)	/	8.315	20.920	41.804	62.563	83.498	/	/	/
Energy efficiency(%)	/	96.04	97.43	97.65	97.54	97.33	/	/	/
PV input voltage	c)	90% of th	ne inverte	r's maxin	num input	voltage			
Temperature (°C)				2	25°C ± 5°	C			
Operating period for energy measurement (min)	1								
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%*	/	/
Input voltage (V)	/	465.7	465.6	465.8	467.2	468.3	/	/	/
Input voltage ripple (V)	/	0.8	1.7	3.0	4.6	5.9	/	/	/
Input current (A)	/	1.1	2.8	5.5	8.3	11.0	/	/	/
Input current ripple (A)	/	0.2	0.4	0.8	1.1	1.5	/	/	/
Input power (Pi) (kW)	/	0.523	1.297	2.571	3.851	5.154	/	/	/
Output power (Po) (kW)	/	0.497	1.262	2.503	3.750	5.016	/	/	/
Output efficiency(%)	/	95.03	97.30	97.36	97.38	97.32	/	/	/
Input energy (Wi) (Wh)	/	8.720	21.614	42.845	64.170	85.887	/	/	/
Output energy (Wo) (Wh)	/	8.318	20.987	41.757	62.506	83.511	/	/	/
Energy efficiency(%)	/	95.39	97.10	97.46	97.41	97.23	/	/	/
Remark: *If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived;									

TABLE	Efficiency re	ecording a	and efficie	ent calcula	ation shee	et						
power conditio	ner type	Grid-cor	nected									
Model:		EVVO 4600TLG2										
Parameters of	power	Minimum rated input voltage:230V										
conditioner		Nominal voltage:360V										
		Maximum input voltage:520V										
		Rated o	utput volt	age:230∖	/							
		Rated o	utput freq	uency:50	Hz							
		Rated o	utput pow	/er: 4600	W							
PV input voltag	ge	a)	a) Manufacturer's minimum rated input voltage									
Temperature (°C)				2	25°C ± 5°C	C					
Operating peri energy measu (min)	od for rement		1									
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/		
Input voltage (V)	/ 228.6 228.9 231.1 229.5 240.0 / /							/	/		
Input voltage r	ipple (V)	/	0.7	1.1	2.3	3.3	4.5	/	/	/		
Input current (A)	/ 2.2 5.3 10.4 15.6 20.8 / /							/			
Input current r	pple (A)	/	0.1	0.3	0.5	0.7	1.0	/	/	/		
Input power (F	i) (kW)	/	0.491	1.208	2.392	3.581	4.786	/	/	/		
Output power	(Po) (kW)	/	0.460	1.160	2.309	3.453	4.604	/	/	/		
Output efficien	су(%)	/	93.69	96.03	96.53	96.43	96.20	/	/	/		
Input energy (Ni) (Wh)	/	8.157	20.115	39.867	59.657	79.790	/	/	/		
Output energy	(Wo) (Wh)	/	7.671	19.309	38.459	57.516	76.77	/	/	/		
Energy efficier	псу(%)	/	94.04	95.99	96.47	96.41	96.22	/	/	/		
PV input volta	ne	b)	The inve	rter's nor	ninal volta	aqe						
Temperature (°C)	,			2	25°C ± 5°	С					
Operating peri energy measu (min)	od for rement	1										
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/		
Input voltage (V)	/	360.0	360.3	360.8	361.9	360.0	/	/	/		
Input voltage r	ipple (V)	/	0.9	1.9	3.5	5.7	7.1	/	/	/		

Page 18 of 26

Input current (A)	/	1.3	3.3	6.6	9.8	13.2	/	/	/
Input current ripple (A)	/	0.3	0.5	0.9	1.3	1.6	/	/	/
Input power (Pi) (kW)	/	0.489	1.189	2.363	3.538	4.725	/	/	/
Output power (Po) (kW)	/	0.458	1.157	2.307	3.453	4.603	/	/	/
Output efficiency(%)	/	93.66	97.31	97.63	97.60	97.42	/	/	/
Input energy (Wi) (Wh)	/	7.994	19.806	39.384	59.006	78.713	/	/	/
Output energy (Wo) (Wh)	/	7.658	19.283	38.458	57.573	76.668	/	/	/
Energy efficiency(%)	/	95.80	97.36	97.65	97.57	97.40	/	/	/
PV input voltage	c) 9	90% of th	ne inverte	r's maxin	num input	voltage			
Temperature (°C)	25°C ± 5°C								
Operating period for energy measurement (min)	1								
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%*	/	/
Input voltage (V)	/	464.1	469.0	468.0	469.3	466.9	/	/	/
Input voltage ripple (V)	/	0.8	1.5	2.8	4.0	5.5	/	/	/
Input current (A)	/	1.0	2.5	5.1	7.6	10.2	/	/	/
Input current ripple (A)	/	0.2	0.4	0.7	1.1	1.4	/	/	/
Input power (Pi) (kW)	/	0.480	1.191	2.368	3.545	4.739	/	/	/
Output power (Po) (kW)	/	0.457	1.152	2.318	3.456	4.620	/	/	/
Output efficiency(%)	/	95.21	96.73	97.89	97.49	97.49	/	/	/
Input energy (Wi) (Wh)	/	8.010	19.855	39.447	59.081	78.943	/	/	/
Output energy (Wo) (Wh)	/	7.620	19.259	38.438	57.565	76.814	/	/	/
Energy efficiency(%)	/	95.13	97.00	97.44	97.43	97.30	/	/	/
Remark:								_	

*If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived;

TABLE	Efficiency re	ecording a	and efficie	ent calcula	ation shee	et					
power conditio	ner type	Grid-con	nected								
Model:		EVVO 4	000TLG2								
Parameters of	power	Minimum rated input voltage:200V									
conditioner		Nominal voltage:360V									
		Maximum input voltage:520V									
		Rated o	utput volt	age:230∨	1						
		Rated o	utput freq	uency:50	Hz						
		Rated of	utput pow	/er: 4000	N						
PV input voltag	ge	a)	a) Manufacturer's minimum rated input voltage								
Temperature (°C)				2	$25^{\circ}C \pm 5^{\circ}C$	0				
Operating peri energy measu (min)	od for rement		1								
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/	
Input voltage (V)	/	201.3	201.7	201.2	198.4	199.7	/	/	/	
Input voltage r	ipple (V)	/	0.8	1.2	2.4	3.5	4.6	/	/	/	
Input current (A)	/ 2.1 5.2 10.4 15.8 21.0 / /							/		
Input current r	ipple (A)	/	0.2	0.3	0.5	0.7	1.1	/	/	/	
Input power (F	²i) (kW)	/	0.424	1.046	2.089	3.126	4.180	/	/	/	
Output power	(Po) (kW)	/	0.400	1.005	2.014	3.006	4.011	/	/	/	
Output efficien	юу(%)	/	94.34	96.08	96.41	96.16	95.96	/	/	/	
Input energy (Wi) (Wh)	/	7.054	17.433	34.84	52.065	69.688	/	/	/	
Output energy	(Wo) (Wh)	/	6.651	16.741	33.561	50.070	66.818	/	/	/	
Energy efficier	псу(%)	/	94.29	96.03	96.33	96.17	95.88	/	/	/	
PV input voltag	ge	D)	I ne inve	rter's non		age	-				
Temperature (°C)				2	$25^{\circ}C \pm 5^{\circ}C$	C				
Operating peri energy measu (min)	od for rement	1									
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/	
Input voltage (V)	/	360.3	360.5	360.3	359.3	360.5	/	/	/	
Input voltage r	ipple (V)	/	1.1	1.9	3.9	5.8	7.9	/	/	/	

Page 20 of 26

Input current (A)	/	1.2	2.9	5.7	8.6	11.5	/	/	/
Input current ripple (A)	/	0.3	0.6	1.0	1.4	1.8	/	/	/
Input power (Pi) (kW)	/	0.416	1.031	2.051	3.077	4.104	/	/	/
Output power (Po) (kW)	/	0.400	1.005	2.006	3.006	4.001	/	/	/
Output efficiency(%)	/	96.15	97.48	97.81	97.69	97.49	/	/	/
Input energy (Wi) (Wh)	/	6.927	17.176	34.177	51.269	68.435	/	/	/
Output energy (Wo) (Wh)	/	6.677	16.767	33.421	50.070	66.706	/	/	/
Energy efficiency(%)	/	96.39	97.62	97.79	97.66	97.47	/	/	/
PV input voltage	c) 90% of the inverter's maximum input voltage								
Temperature (°C)	25°C ± 5°C								
Operating period for energy measurement (min)	1								
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%*	/	/
Input voltage (V)	/	467.6	467.2	468.7	468.8	469.1	/	/	/
Input voltage ripple (V)	/	1.1	1.5	3.0	4.4	6.0	/	/	/
Input current (A)	/	0.9	2.2	4.4	6.6	8.8	/	/	/
Input current ripple (A)	/	0.2	0.5	0.8	1.1	1.5	/	/	/
Input power (Pi) (kW)	/	0.416	1.037	2.055	3.081	4.119	/	/	/
Output power (Po) (kW)	/	0.399	1.010	2.005	3.004	4.011	/	/	/
Output efficiency(%)	/	95.91	97.40	97.57	97.50	97.38	/	/	/
Input energy (Wi) (Wh)	/	6.940	17.276	34.259	51.341	68.651	/	/	/
Output energy (Wo) (Wh)	/	6.647	16.815	33.439	50.083	66.854	/	/	/
Energy efficiency(%)	/	95.78	97.33	97.61	97.55	97.38	/	/	/
Remark: *If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this									

condition is waived;

TABLE	Efficiency re	ecording a	and efficie	ent calcula	ation shee	et					
power condition	ner type	Grid-con	nected								
Model:		EVVO 3600TLG2									
Parameters of	power	Minimum rated input voltage:180V									
conditioner		Nominal voltage:360V									
		Maximum input voltage:520V									
		Rated or	utput volt	age:230∨	1						
		Rated or	Rated output frequency:50Hz								
		Rated or	Rated output power: 3680W								
PV input voltag	ge	a)	a) Manufacturer's minimum rated input voltage								
Temperature (°C)				2	25°C ± 5°C	C				
Operating perio energy measur (min)	od for rement					1					
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/	
Input voltage (V)	/ 181.1 179.2 181.4 180.9 180.4 / /							/		
Input voltage ri	ipple (V)	/	0.8	1.1	2.0	2.9	3.8	/	/	/	
Input current (A	۹)	/ 2.2 5.4 10.6 15.9 21.4 / /								/	
Input current ri	pple (A)	/	0.1	0.2	0.2	0.6	0.8	/	/	/	
Input power (P	i) (kW)	/	0.393	0.964	1.921	2.877	3.846	/	/	/	
Output power ((Po) (kW)	/	0.369	0.923	1.848	2.762	3.683	/	/	/	
Output efficien	cy(%)	/	93.89	95.75	96.20	96.00	95.76	/	/	/	
Input energy (V	Vi) (Wh)	/	6.554	16.054	32.052	47.995	64.159	/	/	/	
Output energy	(Wo) (Wh)	/	6.154	15.379	30.820	46.077	61.397	/	/	/	
Energy efficien	юсу(%)	/	93.90	95.80	96.16	96.00	95.70	/	/	/	
		ſ									
PV input voltag	ge	b)	The inve	rter's non	ninal volta	age					
Temperature (°C)				2	25°C ± 5°C	C				
Operating perio energy measur (min)	od for rement	1									
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/	
Input voltage (V)	/	357.6	358.7	362.7	359.9	357.6	/	/	/	
Input voltage ri	ipple (V)	/	1.1	1.7	3.5	5.5	7.2	/	/	/	

Page 22 of 26

Input current (A)	/	1.1	2.7	5.3	7.9	10.6	/	/	/		
Input current ripple (A)	/	0.3	0.5	0.9	1.3	1.7	/	/	/		
Input power (Pi) (kW)	/	0.388	0.959	1.901	2.826	3.784	/	/	/		
Output power (Po) (kW)	/	0.370	0.929	1.847	2.760	3.692	/	/	/		
Output efficiency(%)	/	95.36	96.87	97.16	97.67	97.57	/	/	/		
Input energy (Wi) (Wh)	/	6.453	15.958	31.694	47.091	63.054	/	/	/		
Output energy (Wo) (Wh)	/	6.127	15.440	30.787	46.009	61.497	/	/	/		
Energy efficiency(%)	/	94.95	96.75	97.14	97.70	97.53	/	/	/		
PV input voltage	c) 90% of the inverter's maximum input voltage										
Temperature (°C)	25°C ± 5°C										
Operating period for energy measurement (min)	1										
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%*	/	/		
Input voltage (V)	/	466.8	468.4	467.9	467.4	469.5	/	/	/		
Input voltage ripple (V)	/	0.8	1.6	2.3	4.0	5.5	/	/	/		
Input current (A)	/	0.8	2.0	4.1	6.1	8.1	/	/	/		
Input current ripple (A)	/	0.2	0.4	0.6	1.1	1.4	/	/	/		
Input power (Pi) (kW)	/	0.385	0.955	1.890	2.834	3.781	/	/	/		
Output power (Po) (kW)	/	0.365	0.931	1.841	2.765	3.685	/	/	/		
Output efficiency(%)	/	94.81	97.49	97.41	97.57	97.46	/	/	/		
Input energy (Wi) (Wh)	/	6.412	15.895	31.515	47.229	63.024	/	/	/		
Output energy (Wo) (Wh)	/	6.132	15.469	30.769	46.095	61.419	/	/	/		
Energy efficiency(%)	/	95.63	97.32	97.63	97.60	97.45	/	/	/		
Remark: *If limited by design, inverte	Remark: *If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this										

condition is waived;

TABLE	Efficiency re	ecording a	and efficie	ent calcula	ation shee	et					
power conditio	ner type	Grid-con	nected								
Model:		EVVO 3000TLG2									
Parameters of	power	Minimum rated input voltage:160V									
conditioner		Nominal voltage:360V									
		Maximum input voltage:520V									
		Rated output voltage:230V									
		Rated or	utput freq	uency:50	Hz						
		Rated or	utput pow	/er: 3000	N						
PV input voltag	ge	a)	a) Manufacturer's minimum rated input voltage								
Temperature (°C)				2	$5^{\circ}C \pm 5^{\circ}C$	C				
Operating peri energy measu (min)	od for rement		1								
Percentage of output VA	rated	/	10%	25%	50%	75%	100%	120%*	/	/	
Input voltage (V)	/ 160.5 160.3 161.6 161.0 160.5 / /							/		
Input voltage r	ipple (V)	/	1.0	0.9	1.5	2.1	2.7	/	/	/	
Input current (A)	/ 2.0 5.0 9.7 14.6 19.6 / /							/		
Input current r	ipple (A)	/	0.1	0.2	0.4	0.5	0.7	/	/	/	
Input power (F	Pi) (kW)	/	0.327	0.796	1.568	2.354	3.139	/	/	/	
Output power	(Po) (kW)	/	0.304	0.759	1.506	2.257	3.006	/	/	/	
Output efficien	юу(%)	/	92.97	95.35	96.05	95.88	95.76	/	/	/	
Input energy (Wi) (Wh)	/	5.439	13.256	26.158	39.252	52.347	/	/	/	
Output energy	(Wo) (Wh)	/	5.055	12.639	25.099	37.644	50.089	/	/	/	
Energy efficier	псу(%)	/	92.94	95.35	95.95	95.90	95.69	/	/	/	
		b)		rtor's non							
Tomporaturo (°C)	5)				290 2500 ± 50	<u>^</u>				
					2	.5°C ± 5°	0				
Operating peri energy measu (min)	od for rement	1									
Percentage of output VA	rated	/	/ 10% 25% 50% 75% 100% 120%* / /							/	
Input voltage (V)	/	357.2	360.0	359.5	360.1	360.4	/	/	/	
Input voltage r	ipple (V)	/	1.1	1.6	2.9	4.6	5.8	/	/	/	

Page 24 of 26

Input current (A)	/	0.9	2.2	4.3	6.4	8.6	/	/	/
Input current ripple (A)	/	0.2	0.4	0.8	1.1	1.4	/	/	/
Input power (Pi) (kW)	/	0.323	0.782	1.540	2.307	3.076	/	/	/
Output power (Po) (kW)	/	0.305	0.753	1.506	2.256	3.005	/	/	/
Output efficiency(%)	/	94.43	96.29	97.79	97.79	97.69	/	/	/
Input energy (Wi) (Wh)	/	5.348	13.019	25.655	38.436	51.265	/	/	/
Output energy (Wo) (Wh)	/	5.041	12.567	25.085	37.586	50.078	/	/	/
Energy efficiency(%)	/	94.26	96.53	97.78	97.79	97.69	/	/	/
PV input voltage	c) 90% of the inverter's maximum input voltage								
Temperature (°C)	25°C ± 5°C								
Operating period for energy measurement (min)	1								
Percentage of rated output VA	/	10%	25%	50%	75%	100%	120%*	/	/
Input voltage (V)	/	468.0	468.4	467.9	467.9	470.0	/	/	/
Input voltage ripple (V)	/	0.9	1.2	2.1	3.2	4.5	/	/	/
Input current (A)	/	0.7	1.7	3.3	5.0	6.6	/	/	/
Input current ripple (A)	/	0.2	0.3	0.6	0.9	1.2	/	/	/
Input power (Pi) (kW)	/	0.319	0.782	1.542	2.310	3.082	/	/	/
Output power (Po) (kW)	/	0.302	0.758	1.504	2.253	3.006	/	/	/
Output efficiency(%)	/	94.67	96.93	97.54	97.53	97.53	/	/	/
Input energy (Wi) (Wh)	/	5.311	13.023	25.689	38.505	51.384	/	/	/
Output energy (Wo) (Wh)	/	5.044	12.639	25.072	37.597	50.131	/	/	/
Energy efficiency(%)	/	94.97	97.05	97.60	97.64	97.56	/	/	/
Remark:		-		-	-	-		-	

*If limited by design, inverter is not capable to operate with the 120% of rated output load, test under this condition is waived;

TABLE	No load loss		Р
power conditio	ner type	Utility-interactive	
EVVO 6000TL	.G2		
Measure input	voltage (V)	360.0	
Measured inpu	ut power(W)	6.522	
EVVO 5000TL	.G2		
Measure input	t voltage (V)	360.1	
Measured inpu	ut power(W)	6.159	
EVVO4600TLC	G2		
Measure input	t voltage (V)	360.1	
Measured inpu	ut power(W)	6.125	
EVVO 4000TL	.G2		
Measure input	voltage (V)	360.1	
Measured inpu	ut power(W)	6.098	
EVVO 3600TL	.G2		
Measure input	t voltage (V)	360.1	
Measured inpu	ut power(W)	5.613	
EVVO 3000TL	.G2	·	
Measure input	voltage (V)	360.1	
Measured inpu	ut power(W)	5.639	
Remark: No lo	ad loss is measu	ured when the power conditioner works at rated input voltage a	nd it's load is

Remark: No load loss is measured when the power conditioner works at rated input voltage and it's load is disconnected.

TABLE	Standby loss		Р
power conditio	ner type	Utility-interactive	
EVVO 6000TL	G2		
Measure input	voltage (V)	230.1	
Measured inpu	ıt power(W)	0.151	
EVVO 5000TL	G2		
Measure input	voltage (V)	230.0	
Measured inpu	ıt power(W)	0.149	
EVVO 4600TL	G2		
Measure input	voltage (V)	230.0	
Measured inpu	ıt power(W)	0.139	
EVVO 4000TL	G2		
Measure input	voltage (V)	230.0	
Measured inpu	it power(W)	0.234	
EVVO3600TL0	32		
Measure input	voltage (V)	230.0	
Measured inpu	it power(W)	0.226	
EVVO 3000TL	G2		
Measure input	voltage (V)	230.0	
Measured inpu	it power(W)	0.224	
Remark: Stand mode.	by loss is measur	ed when the power conditioner works at rated input voltage a	ind in standby

--- End of test report---